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Introduction 
 

The overall objective of this proposed work is to characterize phylogenetic and phenotypic 
relationships of a diverse collection of Venezuelan equine encephalitis viruses (VEEV) to better 
understand epidemic amplification and virulence mechanisms. We will use a combination of high 
resolution genome-wide SNP microarray and deep DNA sequencing technologies against a panel of 
200 VEEV isolates to discover genetic variations and understand VEEV evolution and phylogeny. 

Venezuelan equine encephalitis virus (VEEV) is a mosquito-borne alphavirus capable of 
causing large outbreaks of encephalitis in humans and horses. Major epidemics dating to the early 20th 
century have affected hundreds of thousands of people and economically important equids. VEE 
complex viruses are endemic to South and Central America, Mexico, and Florida (Weaver et al. 2004). 
Although the fatality rate of VEEV is low in human infections (usually less than 1%), infection is 
typically highly debilitating and often results in permanent neurological sequelae (Quiroz et al. 2009). 
Moreover, because the disease primarily occurs in isolated rural areas and typical infections initially 
present with flu-like symptoms, many cases may go undiagnosed or are mistaken for other febrile 
diseases such as dengue (Vilcarromero et al. 2010). Unlike many naturally emerging arboviruses, 
VEEV is also a bioweapon threat due to its highly infectious aerosol-borne transmission history, its 
highly debilitating nature with very few inapparent infections, and its proven history as an effective 
weapon as developed during the cold war by the U.S. and former U.S.S.R. (Hawley and Eitzen 2001; 
Bronze et al. 2002) and its ability to efficiently express foreign genes that could render it even more 
virulent. 

Enzootic VEE is also of particular concern due to its high burden of endemic human disease. 
Recent studies suggest that infected humans develop viremias sufficient in magnitude and duration to 
mediate transmission by the highly efficient urban vector, Aedes aegypti (Weaver and Reisen 2009). 
This scenario raises the possibility that VEE could, like dengue, become an urban disease throughout 
the Americas with even higher morbidity. For U.S. war fighters engaged in a conflict in Latin 
America, either direct exposure to the enzootic cycle in rural regions, as has been documented in 
Panama (Johnson et al. 1968; Quiroz et al. 2009), Colombia (Ferro et al. 2008), and Mexico, or 
infections in urban settings like Iquitos, Peru (Forshey et al.; Vilcarromero et al.; Watts et al. 1997; 
Watts et al. 1998; Aguilar et al. 2004; Vilcarromero et al. 2009; Vilcarromero et al. 2010) could inflict 
direct casualties and severely compromise their ability to fight.  

There are three major challenges that we believe can be solved using new approaches: 1) 
Rapidly estimating the origin of a newly discovered VEEV strain; 2) estimating its equine and/or 
human amplification potential; and 3) Determining the human virulence phenotype of a newly 
discovered VEEV strain. Here, we propose to exploit high-throughput technologies that enable in-
depth genomic sampling and characterization of a large strain panel to fill these crucial needs.  

We used a combination of high resolution genome-wide SNP microarray and deep DNA 
sequencing technologies against a diverse panel of 200 VEEV isolates to discover genetic variations 
and understand VEEV evolution and phylogeny. The 200 isolates include: Virulent vs. a-virulent and 
epidemic amplification-competent vs. incompetent isolates; lab passaged vs. non-passaged isolates; 
geographically diverse isolates from South America, Central America, Mexico, Florida and Texas; and 
isolates from diverse hosts and from human outbreaks. We compared the genetic variability and the 
effect of lab manipulation by serially passaging two VEEV strains in two different cell lines, and 
analyzing the sequence differences by SNP microarray and Illumina sequencing.  We will also use 
computational algorithms to identify amino acid variations in the VEEV proteins that will distinguish 
epidemic amplification-competent and virulent strains. Finally, we will validate the predicted genetic 
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markers using experimental in vitro assays with primary equine and human cells, and via mosquito 
infection assays using reverse genetics approaches.  

 
 

Methods 
 
Whole genome SNP analysis and microarray probe design 
 
SNP analysis 
We applied the kSNP software to find single nucleotide polymorphisms (SNPs) in whole genome data 
(Gardner and Slezak 2010). This is an alignment free method based on k-mer (oligos of length k) 
analyses. A SNP locus is defined by the sequence context of length k surrounding the SNP (k-1)/2 
bases either side of the SNP with a variant SNP allele at the central base. SNP analysis was performed 
with k=13. This representation of a SNP locus is based on surrounding sequence information rather 
than positional information in a genome. It differs from traditional alignment-based concepts of a SNP 
locus, and it allows us to consider draft genomes which are available only as contig fragments in 
which positional information relative to the complete genome is not known. kSNP is also useful for 
viruses in which there may be highly divergent and poorly alignable regions among a large group of 
sequences, and conserved regions only exist among small subgroups of sequences. There is no bias 
that otherwise results from the choice of a reference sequence or from considering only a subset of 
regions of the genome that can be easily or quickly aligned.  kSNP scales to hundreds of bacterial or 
viral genomes, and can be used for finished and/or draft genomes available as unassembled contigs. 
The method is fast to compute, finding SNPs and building a SNP-based phylogeny in seconds to 
hours. SNP-based trees can be calculated using parsimony, maximum likelihood (ML), or neighbor 
joining (NJ) on a distance metric of the number of SNP allele differences between each target 
sequence.  SNP alleles were mapped to the nodes of the tree.  kSNP detected 7926 SNP loci from the 
VEE genomes. After including 4 EEEV genomes as an outgroup, the total number of SNPs was 
increased to 9486 loci.  
 
Probe Design 
Microarray probes were designed for every SNP. Probe design strategy maximized sensitivity and 
specificity based on extensive prior lab testing on a Roche NimbleGen microarray platform, where we 
demonstrated 99.52% SNP allele call rates and 99.86% accuracy (Gardner et al. 2013). After testing 
seven alternative probe design strategies, we determined that maximum sensitivity and SNP 
discrimination accuracy result if the SNP base is at the 13th position from the 5’ end of the probe (the 
end farthest from the array), probes are between 32 and 40 bases long, and length varies so as to 
equalize hybridization free energy (∆G) to the extent possible within the allowable length range. 
Probes shorter than 32 bases have high false negative rates, and longer probes are inefficient at 
discriminating single base mismatches. We found that ∆G is a better predictor of hybridization than 
Tm.  Probe candidates with hybridization free energy below ∆G=-43 kcal/mol were shortened until 
either their ∆G exceeded -43 kcal/mol or they reached the minimum 32 bases. Probes were designed 
around the SNP on both the plus and minus strands, for all four possible SNP alleles, and all 
surrounding sequence variants.  
 
We design probes for both the plus and minus strands; these are not the reverse complements of one 
another because the SNP does not lie at the center of the probe. There are probes for all observed 
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variants on each strand, so at least four probes per SNP locus for biallelic SNPs. In addition, any 
sequence variation outside of the k-mer SNP context of conserved bases is captured in multiple 
alternative probes for that allele, so there may be more than 4 probes per SNP locus, although for a 
given hybridization, only the probe variant with the best signal is used for assessing the SNP allele at 
the 13th position. Finally, probes are trimmed from the 3’ end to remove any N’s or other degenerate 
bases, and omitted altogether if doing so results in a probe less than 32 bases. If a probe is a 
subsequence of any other, only the shorter of the two is kept. For the VEEV data, including the subset 
of probes to detect only observed alleles in the available genomes required 70% fewer probes than 
would be necessary to include probes for the unobserved variants as well, allowing us to fit probes for 
all the SNP loci on a single 12x135K Roche Nimblegen array format, including duplicates for 89% of 
the probes. The probes on the array as well as the full set representing unobserved allele variants are 
available as supplementary data if needed.   

 
Comparing whole genome versus single gene trees 
SNPs from the E1, E2, E3, and capsid genes were extracted for separate analysis by identifying those 
SNPs that occurred within the specified gene region (Table 1). Parsimony trees were built from the 
MSA, all SNPs, and SNPs in each gene. These were compared in terms of the number of splits shared 
between different trees, calculated using CompareTree.pl 
(http://meta.microbesonline.org/fasttree/treecmp.html), and visualized with tanglegrams generated by 
Dendroscope. Equivalent branch rotations which did not change the relationships within a tree are 
performed by an algorithm to minimize the number of crossing lines between trees (Venkatachalam et 
al. 2010). 
 

Table 1. Gene regions from which SNPs were extracted 
 

Gene SNPs between positions Number of SNPs 
E1 10000-11327 1268 
E2 8563-9843 1384 
E3 8386-8574 262 
Capsid 7562-8396 937 
All SNPs 1-~11500 9846 

  
Select, extract, and produce cDNA from VEEV isolates. 
 
We identified a subset of 136 representative strains based on temporal and geographic range, outbreak 
association, and prior genotyping data generated at UTMB (Table 2). Cultures of Vero monkey kidney 
cells were infected at a low multiplicity of infection to produce the passaged isolates, and the culture 
fluid was harvested when cytopathic effects were observed. The virus was precipitated using 
polyethylene glycol and NaCl, then centrifuged for concentration. RNA was extracted using Trizol 
(Life Technologies) according to the manufacturer’s protocol. cDNA production was carried out using 
a mixture of random hexamer and dT oligo priming. This method yielded the best cDNA coverage 
along the genome, providing adequate coverage for subsequent comprehensive deep sequencing and 
microarray analysis. 
 

Table 2. VEEV strains analyzed by SNP microarray. 
 

Subtype Strain Passage History 
Year of 
Collection Host Location Collected 

http://meta.microbesonline.org/fasttree/treecmp.html
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IAB 111-73 sm3 1973 hor Peru 
IAB 69Z1 sm2,BHK1 1969 hum Guatemala 
IAB Beck_Wycoff sm8, cec1 1938 hor Aragua St., Venezuela 
IAB CoAn5384 sm2,cec1 1967 hor Cali, Colombia 

IAB E541_73 sm1, cec2 1973 hum 
Guajira, Zulia State, 
Venezuela 

IAB Piura sm3 1942 mule Piura, Peru 
IAB TRD sm7 1943 don Trinidad 
IAB V-263E u 1943 don Trinidad 
IC 12.225 V2 1995 hum Venezuela 
IC 12.563 V1,BHK1 u hum Venezuela 
IC 6803 V1 1999 hum Falcon State, Venezuela 

IC 9813 V1 1999 hum 
Urdueta, Lara State, 
Venezuela 

IC 25716 BHK1 u u Venezuela 
IC 25717 BHK1 u u Venezuela 
IC 125567 BHK1 1997 hum Zulia State, Venezuela 
IC 243938 V1,BHK1 1996 hor Trujillo State, Venezuela 
IC 255005 SM3 2000 hor Barinas State, Venezuela 
IC 255058 sm2,V1 2000 hor Carabobo State, Venezuela 
IC 369673 V1 1999 hum Manaure, Guajira, Colombia 
IC 369676 V1 1999 hum Manaure, Guajira, Colombia 
IC 369678 V1 1999 hum Manaure, Guajira, Colombia 
IC 369680 V1 1999 hum Manaure, Guajira, Colombia 
IC 12.399 u,BHK1 1995 hum Venezuela 
IC 6119_gi20800451 V1 1995 hum Falcon State, Venezuela 

IC INH9813 u 1995 hum 
Urdueta, Lara State, 
Venezuela 

IC PHO127 BHK1 1962 hum Guajira, Venezuela 
IC PHO1275 sm1,V1? 1962 hum Guajira, Venezuela 
IC PMCHo5_gi20800448 u 1964 hum Monagas, Venezuela 
IC SH3_gi5442468 V1 1993 hum Candelaria, Venezuela 
IC SH5 V1 1997 hum Candelaria, Venezuela 
IC V178 sm1, V1 1961 hor Cundinamarca, Colombia 
IC V198_gi18152933 cec2 1962 hum 

 IC V202 sm1,V1 1962 hum Guajira, Colombia 
IC ZGH734 V1 1999 hum Sinamaica, Venezuela 
IC ZGH868 V1 1999 hum Sinamaica, Venezuela 
ID 247168 V2 2010 hor Panama 
ID 247186 V2 2010 hor Panama 
ID 309752 cec1 1974 hum Lozania, Colombia 

ID 312714 V2 1978 rat Pto. Boyaca, Colombia 
ID 980019 V1 2002 ham Bosque San Miguel, Colombia 
ID 980027 V1 1998 ham Bosque San Miguel, Colombia 
ID 980267 V1 2002 ham Puerto boyaca, Colombia 
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ID 980408 V1 1998 mos Casanare, Colombia 

ID 980517 V1 2003 mos San Pedro de la Paz, Colombia 
ID 00SMH264 none 2000 ham Monte San Miguel, Colombia 
ID 00SMH279 none 2000 ham Monte San Miguel, Colombia 
ID 00SMH290 none 2000 ham Monte San Miguel, Colombia 
ID 00SMM515-11C none 2000 mos Monte San Miguel, Colombia 
ID 02_2720_98 C6/36-1 1998 hum Iquitos, Peru 
ID 204381 u 1973 mos Delta Amacuro, Venezuela 
ID 212857 SMB-1 2003 hum Darién, Panama 
ID 213391 SMB-1 2003 hum B del Toro, Panama 
ID 23647 V1, BHK1 1974 ham Catatumbo, Venezuela 
ID 242959 u 1966 u Gamboa, Panama 
ID 249443_Yumare sm2,V6 1972 ham Yumare, Venezuela 
ID 251641 sm3,V3 1976 ham Pto. Concha, Venezuela 
ID 307537 V1 1971 mos Pto. Boyaca, Colombia 
ID 309506 V1 1973 ham Pto. Boyaca, Colombia 
ID 334250 V2 1977 mos Pto. Boyaca, Colombia 
ID 335733 none 1978 ham Pto. Boyaca, Colombia 
ID 3880_gi323706 u 1961 hum Canito, Panama 
ID 474590 V2 1997 hum P. metro, Panama 
ID 481460 V2 2000 u Peste, Panama 
ID 4840 BHK1,sm2,V1,cec1 1961 hum PA 
ID 484551 V2 2001 u Darien, Panama 
ID 485029 V2 2001 u Darien, Panama 
ID 622-41 none 2000 mos Monte San Miguel, Colombia 
ID 75D143 cec1 1975 mos Iquitos, Peru 
ID 76V2561_1 sm4 1975 mos u 
ID 8138 cec2 1962 hum El Rincon, Panama 
ID 903104 BHK1 1977 mos Bayano, Panama 
ID 92CO-59 none 1996 ham Los Corales, Colombia 
ID 97Co42 v1 1997 ham Monte San Miguel, Colombia 
ID 98-003 u 2002 ham Los Corales, Colombia 
ID 98-007 u 2002 ham Los Corales, Colombia 
ID 993MM304-1 none 1999 mos Monte San Miguel, Colombia 
ID CoAn59145 BHK3 u ham Tibu, Colombia 
ID CoAn9004_1 sm3, V1 1969 ham Tumaco, Columbia 
ID FPI3700 V1 u hum Peru 
ID FSE507 V1 2000 hum Iquitos, Peru 
ID FSL2314 u 2006 u Loreto, Peru 
ID FSL2649 u 2006 u Loreto, Peru 
ID FVB0204 u 2006 u Cochabamba, Peru 
ID FVB0258 u 2007 u Cochabamba, Peru 
ID GML903843 V1, BHK1 1984 hum Bayano, Panama 
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ID IQT1724 V1 1995 hum Loreto, Peru 

ID MAC10 V1 1998 ham 
Padron Agric. Station, 
Miranda State, Venezuela  

ID P676_gi14549692 u 1963 mos 
 

ID Pan34958 p2,sm1 1976 mos 
Catatumbo, Zulis State, 
Venezuela 

ID R16880 sm4, V1 1976 ham u 
ID V209A sm2,V2 1960 mus u 
ID ZPC10 V1 1997 ham Venezuela 

ID ZPC727 none 1997 ham 
Las Nubes, catatumbo, 
venezuela 

ID ZPC820 none 1997 ham 
Las Nubes, catatumbo, 
Venezuela 

IE 2177B V3 1968 u Nicaragua 
IE 63A216 sm1 1963 mos Veracruz, Mexico 
IE 63Z1 sm1, V1 1963 hum Veracruz, Mexico 
IE 65U206 sm1 1965 ham Sontecomapan, Mexico 
IE 66U91 cec1 1966 ham Sontecomapan, Mexico 
IE 67U201 sm1 1967 ham Belize 
IE 67U208 V? 1967 ham Honduras 
IE 67U222 V1 1967 ham Minititlan, Mexico 
IE 67U225 sm1 1967 ham Pto. Cortez, Honduras 

IE 68U200 none 1968 ham 
La Avellana, Santa Rosa 
Department, Guatemala 

IE 68U201 u,sm1 1968 ham La Avellana, Guatemala 
IE 68U217 BHK1 1968 ham Pto. Barrios, Guatemala 
IE 69U315 sm1 1969 ham Sontecomapan, Mexico 
IE 70U1134 u 1970 ham Iquitos, Peru 
IE 70U74 u 1970 ham Pto. Barrios, Guatemala 
IE 71U382 V1 1971 ham La Avellana, Guatemala 

IE 71U384 sm1, V1 1971 ham 
Santa Rosa Department, 
Guatemala 

IE 72U23 V1 1972 ham La Avellana, Guatemala 
IE 73U151 u 1973 ham La Avellana, Guatemala 
IE 78U202 u 1978 ham La Avellana, Guatemala 
IE 79U13 BHK 1 1979 ham Izabal Department, Guatemala 
IE 80U76_gi17865005 u 1980 hor La Avellana, Guatemala 
IE BT2607 u 1961 mos Almirante, Panama 
IE MenaII_gi4262302 u 1962 hum Zulia State, Venezuela 
IE MX01-32 none 2001 ham Chiapas State, Mexico 

IE MX03H1 none 2003 ham 
Las Coaches, Pijijiapan, 
Chiapas State, Mexico 

IE MX08H50 V1 2008 ham 
E. Coachapa, Minatitlan, 
Veracruz State, Mexico 

IE MX08H53 V1 2008 ham 
Tacoteno, Minatitlan, 
Veracruz State, Mexico 

IE MX09M64 V1 2008 mos 
Tacoteno, Minatitlan, 
Veracruz State, Mexico 
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IE MX10_94M5 none 2010 mos 
Minatitlan, Veracruz State, 
Mexico 

IE MX10H91_00011 none 2010 ham 
Minatitlan, Veracruz State, 
Mexico 

III FSL0190 V2 2000 hum San Juan, Iquitos, Peru 
III PC254 u 1997 rat Iquitos, Peru 
III PE407660 u 1998 mos Iquitos, Peru 
IIIB MucamboBeAn8_gi4262305 u 1954 u Brazil 
IV PixunaBeAr35645_gi4262314 sm4, V1 1961 mos Brazil 
V CabassouCaAr508_gi4262323 sm10 1968 mos French Guiana (Cabassou) 
IC 243937_gi5442464 V1, BHK1 1992 hor Trujillo State, Venezuela 
IC 254934_gi62824833 BHK1 2000 hor Barinas State, Venezuela 
IC 255010_gi62836644 sm2,V1 2000 hor Barinas State, Venezuela 

IE MX03H2 none 2003 ham 
Las Coaches, Pijijiapan, 
Chiapas State, Mexico 

IE MX09Eq03 V1 2009 hor 
Tacoteno, Minatitlan, 
Veracruz State, Mexico 

  
Extract whole RNA from infected animal tissue. 
 
Mouse brains infected with VEEV vaccine strain TC83 were subjected to whole RNA extraction. 
Brains infected with Chikungunya virus vaccine strain 181/clone 25 were examined in parallel for 
control purposes. Three biological replicates were examined for each viral infection. Brain tissue was 
homogenized in Trizol (Life Technologies). RNA was extracted and purified using the Direct-zol 
RNA MiniPrep kit (Zymo Research) according to the manufacturer’s instructions. Whole cDNA was 
synthesized as described above. 
 
Fabricate 12-plex 135K NimbleGen arrays and hybridize VEEV cDNA to the arrays. 
 
All cDNA samples were fluorescently labeled and hybridized to VEE SNP array as described (Jaing et 
al. 2008). Briefly, fluorescent labeling of samples was performed using the Nimblegen One-Color 
DNA Labeling Kit (Roche). One µg VEEV cDNA was added to Cy-3 labeled random primers, 
followed by isothermal amplification at 37°C using klenow polymerase.  Labeled DNA was purified 
via isopropanol precipitation and resuspended in water for microarray hybridization. DNA samples 
were prepared for hybridization using the Nimblegen Hybridization Kit LS. Three µg labeled DNA 
were hybridized to each array, followed by incubation for 40-45 hours at 42°C. Arrays were washed 
using the Nimblegen Wash Buffer Kit. The fluorescent signal on the array was scanned using a 2 µm 
Roche fluorescent scanner MS200. The array raw data was generated using the NimbleScan software 
available from Roche NimbleGen.  
 
Examine phylogenetic relationships between and evolution of VEEV strains based on SNP 
microarray data. 
 
We used our previously developed analysis software to call alleles at each locus for each sample 
analyzed on SNP microarrays. The software fits a linear model of strand and allele effects to the log 
intensity data from all probes for the locus, and calls the allele as the one with the largest coefficient in 
the fitted model. Separating the strand and allele effects is necessary in order to compensate for the 
differing hybridization efficiencies often seen between forward and reverse strand probes.  
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Because our definition of a SNP locus requires conservation of the 6 bases on either side of the 
polymorphic base, array probes for one locus may hybridize to genomes in which a similar locus 
context is present. That is, loci that are considered to be different in the sequence analysis, but have 
13-mer contexts that are identical except at one or two positions, may be difficult to distinguish by 
microarray probes. Therefore, our current array analysis software does not try to determine whether a 
locus is present or absent; i.e. an allele call is made for every locus.  
 
For isolates analyzed on the array that had genome sequences available, we computed the concordance 
rate between the allele calls from the array and the genome sequence, as the fraction of loci present in 
the genome for which the array calls agreed. We also computed the numbers of allele differences 
between each array sample and each genome, and determined whether the closest genome was in fact 
the genome sequence for that strain. 
 
We used the combined genotype data from SNP microarrays and genome sequences to create 
maximum parsimony phylogenetic trees, using Parsimonator 
(https://github.com/stamatak/Parsimonator-1.0.2. ). We chose the best (most parsimonious) of 100 
trees generated using different random number seeds.  
 
Phenotype/genotype associations 
 We identified variable positions in the MSA that were non-randomly associated with a given 
subtype or host according to chi-squared tests using PPFS (https://sourceforge.net/projects/ppfs) (Hall 
2014).  Using 100 bootstraps per phenotype, we identified positions most reliably associated with each 
binary phenotype across bootstrap replicates. For each position/phenotype association, we counted the 
true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN), and used them 
to compute the accuracy = (TP + TN) / (TP + FP + TN + FN), positive predictive value (PPV) = 
TP/(TP + FP), negative predictive value (NPV) = TN/(TN+FN), true positive rate TPR=TP/(TP+FN), 
and true negative rate TNR=TN/ (TN+FP). We also reported the number of positions with chi-square 
p < 7.98x10-8, based on the Bonferroni correction with a single test p value of 0.001 divided by 12524, 
the number of non-consensus positions in the alignment.  
 
Perform whole genome sequencing of a subset of VEEV RNAs to confirm microarray data. 
 
We selected a subset of 10 isolates for whole genome sequencing using the 10 barcode multiplex 
Illumina sequencing technology to confirm microarray findings. We sequenced at a minimal depth of 
100x to identify SNPs and other variations among different VEEV samples.  The quality values of 
individual base calls and the alignment scores of individual reads were evaluated using a collection of 
open source software tools designed to recover high confidence SNP calls while minimizing the 
potential for false negatives.  
 
We applied a modified version of our existing bioinformatics software package designed for 
characterizing the mutant spectra of a viral population using Illumina sequencing data (Chen-Harris et 
al. 2013). Reads are mapped to a near neighbor genome, which is selected from the VEE whole 
genome database when the isolate could be matched with the newly sequenced sample.  When there 
was no clear near neighbor, the reads were mapped to all VEE genomes in the database and the 
genome with the highest number of mapped reads was selected.  A new “consensus” genome is 
reconstructed from the mapped reads and the reads were then re-mapped to the new consensus 

https://github.com/stamatak/Parsimonator-1.0.2
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genome.  This process is repeated until the newly assembled genome converges on a single consensus 
sequence. The software applied a statistical framework to report predicted rare variants that can be 
confidently distinguished from mutations introduced by sequencing error by counting the number of 
reads that map to the consensus genome (or dominant genotype) and contain a rare variant and occur 
with sufficient frequency to be unlikely explained by sequencing error.  There were two modifications 
to the published protocol since we did not have access to overlapping read-pairs to do exact error 
correction and sequencer error modeling.  Therefore, we relied on earlier work to apply previously 
quantified error profiles.    
 
Characterize genetic variation in two passaged VEEV strains vs. their natural unpassaged 
strains. 
  
We selected two phylogenetically distinct unpassaged isolates, one from a mosquito pool (MX10-
94M5) and one from a sentinel hamster (00SMH279), performed ten serial passages of each in Vero 
and C6/36 mosquito cells then performed Illumina deep sequencing of the four passaged virus 
populations with the sequencing of the two unpassaged samples currently in progress.  Three of the 
four sequenced passage samples were successfully completed with the fourth sample (MX10-94M5 
passage 10) currently being re-sequenced due to a low sequence data yield.   
 
Table 3 shows the high coverage returned for each of three sequencing runs, which indicate the 
potential to detect rare variants down to 0.02% with 853,589x coverage.  The number of rare variants 
present is reported to number from 2,823 (OSHMH279 C636) to 3,354 (OOSMH279 Vero), however, 
given the potential variation in sequencing error in the current experiments relative to previous 
estimates, this count could include some false positive calls. Table 3 also shows a more conservative 
estimate by counting rare variants that occur with > 0.1% frequency in the observed reads.   
 
Infection of monocytes and analysis of VEEV replication patterns. 
 
To examine differential patterns of viral replication between diverse VEEV strains, we proposed to 
perform monocyte infection assays. Isolation of human monocytes from fresh blood is a delicate and 
lengthy process, which requires a large amount of blood in order to obtain sufficient monocytes to 
complete infections with 10 VEEV strains. In order to simplify this process, we elected to use a 
monocyte cell line to complete this part of the task. THP-1 cells (ATCC TIB202TM) were obtained 
and cultured according to ATCC guidelines. We performed the initial pilot experiment with 5 strains: 
IAB TrD, IC 3908, IC SH3, ID ZPC738, and IE 68U201. 
 
THP-1 human macrophage cells were infected in triplicate at a multiplicity of infection of 10 for one 
hour in suspension, then transferred infected cells to a 12 well plate for incubation. 100 µl aliquots of 
supernatant were harvested at 0, 12, 24 and 48 hours post-infection. Supernatants were then analyzed 
by plaque assay to determine titers. 
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Table 1. Sequencing Coverage of 14 sequenced samples. The three samples with low sequencing 
coverage are being repeated. We’ll submit an updated table once it is complete. 

 

Results 
 
Whole genome SNP analysis and phylogenetic tree construction 
 
When we compared SNP-based trees built by different methods to a tree constructed from a whole 
genome multiple sequence alignment (MSA), the SNP tree built with parsimony (Figure 1) was more 
similar to the MSA-based tree than those built with NJ or ML. Out of all splits in the alignment-based 
tree, 77% were represented by splits in the parsimony tree, compared to only 68% in the ML tree. 
Moreover, the parsimony tree had fewer homoplastic SNPs than the ML tree (1679 versus 2153, 
respectively, from the dataset using the EEEV outgroup genomes). Homoplastic SNP loci are those in 
which the pattern of shared alleles does not conform to any of the branches of this tree, as a result of 
processes such as convergent evolution, homologous recombination, multiple mutations at the same 
site, or sequencing errors. Maximum parsimony has been shown to outperform ML in phylogenies that 

Strain 
designation  

Consensus 
sequence 
length 
(>20x)  

Rare 
variants 
(>0.1%)  

Rare 
variants  
(all) 

Coverage 
(x1000)  

Name of reference strain  

FSL0190  10572  63  2009 104  71D-1252  
GML908408  8174  -  239 0.065 (Low)  Mesocricetus 

auratus/COL/97CO-
42/1997/ID  

MAC10  11385  223  2059 97  Mosquito/PER/75D143/19
75/ID  

MUCAMBO  8810  666  2208 50  Mucambo BeAn 8  
PE40766  10486  67  1487 74  71D-1252  
PIXUNA  5843  -  744 0.14 (Low)  Pixuna BeAr 35645  
249443  11365  154  1393 92  Equus caballus/PER/Hoja 

Redonda/1971/IAB  
58_73-IAB  11403  415  2478 361  Equus ferus 

caballus/PER/111/73/1973
/IAB 

CABOSSOU  11385 313  2350 82  Cabassou CaAr 508 
CLH2293  10532  77  2784 251  71D-1252  
00SMH279_C636
_P10  

11214  137  2823 187  Mesocricetus/auratus/COL
/00SMH279/2000/ID  

00SMH279_VER
OS_P10  

11215  110  3354 302  Mesocricetus/auratus/COL
/00SMH279/2000/ID  

MX10-
94M5_C636_P10  

2902  -  66 0.015 (Low)  Mosquito 
pool/MEX/MX10-
94M6/2010/IE  

MX10-
94M5_VEROS_P
10  

11446  70  3251 295  Mosquito 
pool/MEX/MX10-
94M6/2010/IE 
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display heterotachy, a phenomenon in which the rates at which different sites evolve change over time 
(Kolaczkowski and Thornton 2004). In this case, non-parametric estimation of trees by parsimony is 
more accurate than parametric methods such as ML. In VEEV, evolutionary rates may vary more over 
time in genes playing a larger role in transmission and immune evasion, such as those encoding the 
envelope and capsid, than in structural or polymerase genes. For this single stranded RNA virus, 
rapidly evolving genes are about a third of the genome, so that heterotachy has a strong effect on 
genome evolution. This could explain why the parsimony SNP tree seems to more closely resemble 
the MSA based tree and has fewer homoplasies. By contrast, when we build phylogenetic trees for 
bacteria with thousands of genes, rapidly evolving regions are a small fraction of the genome. In this 
case heterotachy has a smaller influence on genome evolution, and we usually find that ML SNP trees 
produce more accurate results than parsimony. 
 
Figure 1. SNP phylogeny by parsimony. Strains labeled by subtype-country-year collected-strain-host. 

Country: GA=Guatemala, PE=Peru, NI=Nicaragua, VE=Venezuela, CO=Colombia, TR=Trinidad, 
PA=Panama, US=USA, EC=Ecuador, ME=Mexico, BE=Belize, HO=Honduras, BR=Brazil, 

AR=Argentina, FG=French Guiana. Host: hor=horse, don=donkey, hum=human, mos=mosquito, 
ham=hamster, mus=mouse.  u=unknown. Subtype: blue=IE, green=ID, red=IC, and purple=IAB). 

Collection host: symbols at branch tips (red circles=human, orange circles= horses, blue 
circles=mosquitos, and green squares=hamsters). Number of shared alleles shown in blue at nodes. 
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Almost all VEEV strains could be uniquely identified by their genotypes across these SNP loci. 
Numbers at the nodes of the tree in Figure 1 indicate the number of loci at which the allele is uniquely 
shared by all and only the strains down that branch. Only two sets of genomes were unresolved (i.e., 
had identical genotypes across all 7,926 SNPs, Figure 1 strains in italic, not bold, type). One consisted 
of two genomes collected on successive days from Minatitlan, Mexico on August 26-27, 2010: one 
from a mosquito pool and the other from a sentinel hamster. The other comprised four genomes, also 
collected from Minatitlan in 2010; the first three collected from mosquito pools on August 26-27, and 
the fourth from a hamster on August 28. These results indicate that sentinel hamsters do become 
infected with the variants circulating in insect vectors in the area at the time. These isolates were 
members of a larger group of closely related genomes collected in Minatitlan, Mexico between July 
2008 and late August 2010 in hamsters and mosquitos, as well as two from horses.  
 
Tree organization with respect to serotype, collection date, and host 
 
The phylogeny generated by whole-genome SNP analysis (Figure 1) has overall structure similar to a 
previously published phylogeny, which was based on alignment of the E2 gene and parts of the E3 and 
6K genes from a smaller set of strains (Anishchenko et al. 2006a). However, the larger set of complete 
genomes used in our analysis makes it possible to resolve both high level clades and fine scale SNP 
differences among closely related strains. Several patterns emerged.  
 
First, we extended previous results (Weaver and Barrett 2004) showing that strains with high overall 
similarity across the whole genome may exhibit different antigen serotypes. For example, the epizootic 
type IAB strains and associated vaccine strains (Figure 1) collected from multiple countries from 
1938-1973 form a distinct clade of highly similar isolates; however, this clade also includes a subtype 
ID isolate (R16905) collected in 1977. Likewise, all of the epizootic/epidemic IC strains have high 
similarity to groups of enzootic type ID isolates. In turn, subtype ID isolates can be found in both of 
the two major branches of the phylogeny; one set that clusters with the type IAB and IC strains 
previously mentioned, and another group that appears to have emerged from the enzootic subtype IE 
strains that make up most of the upper branch of the tree. We also found one case of a type IE strain 
(70U1134) that groups with a set of ID isolates in the lower branch of the tree. 
 
Second, when we examined the collection dates of samples found in each clade, we found that many 
clades were remarkably persistent. While a few clades were relatively transient, with collection dates 
all within a few years (e.g. the IE isolates sampled in Mexico from 2008-2010), most clades persisted 
over one or more decades. For example, the subtype IAB epizootic strains (and associated type ID 
outlier) showed little genetic variation, even though they were collected over nearly 40 years (1938-
1977) across a wide geographic area, from USA through Guatemala and Trinidad down to Venezuela 
and Peru. Likewise, the subtype IC and ID isolates comprising the lower part of the tree in Figure 1, 
collected between 1961 and 2005, have very few differences across our panel of SNP loci. 
 
Third, we found that phylogenetic groupings were not in general associated with particular hosts; the 
broad associations that do appear are likely artifacts of the different sampling strategies used for 
enzootic (subtype ID and IE) strains, which account for all samples from mosquitos and sentinel 
hamsters, and for epizootic (subtype IAB and IC) strains, which comprise most samples from equids 
and humans. Within the major branches of the phylogeny, we find many cases of human- or equid-
infecting isolates that are closely related to strains collected from hamsters or mosquitos. For example, 
the only human-infecting genomes from enzootic subtype IE strains (IE-VE-1962-MenaII_gi4262302-
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hum and IE-ME-1963-63Z1-hum) are each nearly identical to isolates collected from mosquitos or 
hamsters, though unrelated to one another. The serotype ID infections from Panama and Peru collected 
from 1961-2003 is the largest cluster of mostly human isolates (lower right quadrant of the tree), 
uniquely sharing 61 SNPs, 11 of which are nonsynonymous, landing on both the structural (e.g. E2) 
and nonstructural polyprotein (e.g. nsp3). There was only one fatal human infection, 3880 (gi|323706) 
from Panama in April 1961.     
 
Phenotype prediction 
 
Because the host and subtype do not correspond exactly to the phylogeny, this gives us the opportunity 
to search for positions associated with these important phenotypes and which are not simply a product 
of ancestry. We applied the PPFS package to identify variations that are associated with particular 
hosts or subtypes. Our results indicate that these phenotypes are complex polygenic traits affected by 
multiple alleles on multiple genes.  
 
Phenotype prediction of subtypes displayed accuracies of 90% for ID up to 99% for IAB and IE (Table 
4). The SNP at position 213 on the E2 protein shown previously (Anishchenko et al. 2006b) to mediate 
the shift from ID to IAB or IC (T213 -> K or R) was also identified here to associate non-randomly with 
phenotype, although the association was not as clear as previous studies had found; five ID strains had 
the K213 allele that Anishchenko et al. had concluded would convert the phenotype to IC (ID-EC-
1977-R16905-u, ID-PA-1962-8138-hum, ID-VE-1963-P676_gi14549692-mos, ID-VE-1963-
P676_gi9626526-mos, ID-VE-1973-204381-mos).  IC and ID had lower accuracy, PPV, etc. than IE 
and IAB, as expected from the pattern of closely related mixed types in the tree (Figure 1). It was not 
possible to accurately distinguish many of the IC, ID, and the lone IE in the lower half of the tree in 
Figure 1 using the predictive models built by PPFS. 
 
Table 4. Accuracy, positive and negative predictive value, true positive and negative rates, the number 

of variable positions used in the PPFS prediction model, and the number of variable alignment 
positions non-randomly associated with each phenotype. 

 

Accuracy PPV NPV TPR TNR

# Align-
ment 
positions 
used in 
prediction

# Align-
ment 
positions 
signficant
*

IAB 0.99 0.91 1.00 1.00 0.99 32 166
IC 0.96 0.70 0.98 0.70 0.98 54 42
ID 0.90 0.82 0.96 0.94 0.88 18 2305
IE 0.99 0.98 0.99 0.98 0.99 19 2584
hamster 0.75 0.65 0.93 0.95 0.59 17 0
horse 0.92 0.89 0.92 0.44 0.99 37 37
human 0.90 0.92 0.90 0.50 0.99 6 123
mosquito 0.82 0.67 0.85 0.45 0.93 5 0
horse or human 0.87 0.91 0.85 0.76 0.95 30 46  
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Accuracy of host prediction was lower than for subtype prediction, ranging from 75% for hamster up 
to 92% for horse. The TPR, i.e. the number predicted to be positive that actually are, for mosquito, 
horse, and human hosts was low, and the TNR for hamster hosts was low. Considering human and 
horse hosts combined as a single large mammal phenotype and counting mosquito hosts as unknown 
had only a minor affect, slightly improving TPR but not overall accuracy. Close inspection of the 
mutations identified as significant showed that they followed the phylogeny, and no mutations that 
universally associated with host or serotype across multiple different phylogenetic branches could be 
identified. This was the reason all our phenotype/genotype association models required up to several 
dozen positions, and still made false positive and negative calls. The 6 positions identified for 
predicting association with human hosts are all nonsynonymous, with 3 on the nsP3 protein, and one 
each on nsP4, capsid, and E2. While significant, these are not sufficient predictors of human outbreak 
potential, as shown by the low TPR in the predictive model. 
 
Because of the non-random association of host and subtype (all hamster and mosquito samples were 
from subtypes ID and IE), we also stratified by type prior to searching for SNPs associated with host. 
No SNPs perfectly discriminated whether the host was human or horse in the IC or the combination of 
IC and IAB subtypes, suggesting that IC and IAB strains collected from horses do not consistently 
differ from those isolated in human hosts.  Nor was it possible to identify SNPs in the IE subtype 
strains to perfectly distinguish those isolated from horse, hamster, or mosquito.  
 
The nsP3 gene appears to be a hotspot for subtype/host-associated mutations (Figure 2). The main plot 
shows the density of variable positions selected for inclusion in the PPFS prediction model in a 500 bp 
sliding window, while the inset shows the number of significant positions including many that were 
not selected for the predictive model (because they provided equivalent or redundant information with 
those mutations already selected).  
 

Figure 2. Density of variable positions in a sliding 500 bp window selected by PPFS for 
genotype/phenotype prediction, combined for all host and subtype models, plotted relative to the TC-

83 genome, with horizontal lines showing the approximate positions of the mature peptides. The 
smaller inset plot shows the density of all significant positions with chi-square p<7.98x10-8. 
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We also ran PPFS on the SNPs predicted by kSNP rather than the variable positions from an 
alignment, and found that PPFS predictions from variable positions in the MSA were slightly more 
accurate and generated models relying on fewer positions than predictions based on kSNP SNPs. VEE 
is highly variable, and mutations in the context around a SNP caused some homologous positions 
across strains to be considered as different loci by kSNP, since kSNP defines loci by conserved 
flanking sequence and does not consider indels. This resulted in large numbers of missing loci for each 
strain.  
 
Comparing whole genome alignment to SNP analysis, and single gene SNPs to complete genome 
SNPs 
 
Comparing the tree from all SNPs versus the trees generated from using only the SNPs in a single 
gene shows that only about half the splits are present in the gene trees from any of the envelope 
genomes compared to the tree based on all SNPs in the genome (Table 5). This is not surprising, since 
only 13% of the SNPs fall on the E1 gene, so lower resolution and accuracy is expected. The capsid 
gene SNPs are somewhat worse, with only 37% of the splits observed, despite the fact that there are 
over 3.5 times more SNPs in the capsid gene than the E3 gene, which has the smallest number of SNPs 
for building the tree. The E1 gene results in a better representation of the tree than E2 or E3, as it 
captures almost 10% more of the splits identified from all the SNPs.  
 

Table 5. Comparison of trees from MSA versus all SNPs, and trees from SNPs located in a single 
gene versus all SNPs. 

 
Tree comparison Splits Found 

in 2nd tree 
Total 
Splits in 1st 
tree 

Fraction splits in 1st 
tree found in 2nd 
tree 

MSA vs all SNPs 112 146 0.77 
All SNPs vs E1 84 146 0.58 
All SNPs vs E2 72 146 0.49 
All SNPs vs E3 68 146 0.47 
All SNPs vs capsid 54 146 0.37 

 
 
Figure 3 shows a tanglegram with the tree from the MSA on the left and all SNPs on the right, with 
lines connecting the same taxa between trees. Differences between these trees are minor and within a 
reasonable expectation of uncertainty in the trees, mostly around the poorly resolved Mucambo, 
CabassouCaAr, PixunaBeAn, etc. These were the strains collected from mosquito pools from 1954-
1980 from geographically dispersed French Guiana, Brazil, Argentina, and Peru, and are now 
considered different species in the VEEV antigenic complex (Weaver and Barrett 2004). Each of these 
genomes has about 500 genome specific SNP alleles and they are a diverse set of V, IV, VI, IIIA, IIIB, 
IIIC, and IF species with only one representative each, each branching off the tree basal to the 
branches leading to the more heavily sequenced subtypes from Mexico, Peru, and Venezuela. In 
summary, the similarity between the whole genome SNP and MSA trees supports our SNP genotyping 
approach as a rapid, cost effective method to phylogenetically characterize unsequenced samples using 
SNP arrays.  
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Figure 3. Tanglegram connecting the corresponding taxa which illustrates the high similarity between 
the MSA tree (left) and the SNP tree (right). Tanglegrams were created with Dendroscope 

(Scornavacca et al. 2011). 
 

 
 
Figures 4 and 5 show the tanglegrams with the tree from all SNPs on the left and the tree from the 
SNPs in the E1 (Figure 4) or capsid (Figure 5) gene on the right. The EEE genomes are not clustered 
as a monophyletic group in any of the SNP gene trees. Further, the capsid gene SNP tree has lower 
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accuracy than the envelope gene trees, illustrated by the many crossing lines of the tanglegram in 
Figure S3. The differences between the gene SNPs trees and the whole genome SNPs tree illustrate the 
difficulty of phylogenetic analyses based on a small region rather than the full length of the genome, 
and suggest that SNP phylogenies created from a single gene may risk low resolution and accuracy.
 

Figure 4. Tanglegram illustrating differences between the SNP tree based on all SNPs (left) and the 
tree based only on the SNPs in the E1 gene (right). 
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Figure 5. Tanglegram illustrating differences between the SNP tree based on all SNPs (left) and the 

tree based only on SNPs in the capsid gene (right). 
 

Microarray analysis of VEEV cDNA samples 
 
We hybridized cDNAs from 136 isolates to SNP arrays. Genome sequence data was available for 
82 of the samples. The overall concordance rates were calculated between the allele calls made 
by SNP microarray versus those called by whole genome sequence data. The overall 
concordance rate was 97.47%. Hybridizations of replicate cDNA samples extracted from the 
same isolate showed close agreement between replicates. One source of error was that the array 
analysis currently is not able to call a locus as missing, even if that locus is not present in the 
genome sequence, causing discordance between the genome and array. The array correctly 
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classified 70 out of 75 cDNA samples. The 5 misclassified cases (Table 6) were to highly similar 
sequences collected in the same location, some of which are arguably the same strain (e.g. 
MX03H1 and MX03H2), and the concordance rates were almost identical between the correct 
and incorrect strain. 
 

Table 6: Strains where the closest genome called by the array was incorrect. Each pair of 
sequences lists the genome sequence followed by the array strain call. 

 
Strain host Subtype Country Year 
255010gi62836644 hor IC VE 2000 
254934gi62824833 hor IC VE 2000 

     PE407660 mos III PE 1998 
FSL0190 hum III PE 2000 

     MX03H2 ham IE ME 2003 
MX03H1 ham IE ME 2003 

     MX09M51 mos IE ME 2009 
MX09M64 mos IE ME 2008 

     MX1091M8 mos IE ME 2010 
MX10H9100011 ham IE ME 2010 

 
  

A parsimony based phylogenetic tree was generated using both SNP microarray and whole 
genome sequencing data (Figure 6). The SNP array data are shown in bold and labeled as 
“Array”, and the whole genome sequence data is shown in plain text and labeled as “Seq.” 
Serotypes are color coded (ID in green, IC in aqua, IAB in plum, IE in blue). Host from which 
the sample was collected are color coded by the circle at the tips (human in red, horse and 
donkey in yellow, mosquito in blue, hamster in light green). Array and sequence data for the 
same strain appear in close proximity on the tree, especially for the ID and IE subtypes. Some of 
the IC array isolates cluster together and are not nearest neighbors with their respective genome 
sequence, although both the array samples and genomes fall under a very closely related branch. 
The IC strains that diverge from this large IC cluster, and instead appear down branches of 
mostly ID isolates, do place the array result adjacent to the genome data from the same isolate. 
Thus, differences of a just a few SNPs among highly similar isolates are better resolved by 
genome sequencing, while array data provides sufficient accuracy in phylogenetic classification 
to correctly cluster isolates by clade and to identify the closest neighbors that have been 
sequenced or hybridized to the array. Array data is suitable to classify isolates by subtype, host, 
country, and year to the extent that these correlate with phylogeny. 
 
Figure 6. Phylogenetic tree of SNP array data and whole genome sequence data of VEE, using 

parsimony. 
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Microarray analysis of infected tissue samples 
 
To determine if strain genotyping could be performed directly from infected tissue, we extracted 
whole RNA from infected mouse brains, produced cDNA, and processed these samples on the 
SNP array. The tested strain (TC-83) was successfully identified in each of three samples. 
Successful typing directly from samples that would potentially be collected in the field could 
allow for strain identification without the time consuming and laborious steps inherent in 
isolation and culture. 
 
Whole Genome sequencing of a subset of VEEV strains 
 
We compared genetic variation among the dominant genotype of a subset of VEEV strains (i.e. 
the consensus assembled genomes), comparing the unpassaged and the subsequent passaged 
samples.  Table 7 summarizes the 11 genome positions where there was a mutation observed 
between the unpassaged and passaged 00SMH279 samples.  The variation for the two MX10-
94M5 samples is also shown.  Ideally, a clear genetic marker for passaging would emerge with 
the presence of a position in the genome where all of the passaged isolates shared the same 
genetic variant, and the variant would be distinct from the unpassaged variants; however this did 
not occur. There are six mutations associated with a change from unpassaged to passaged, but 
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they are only found in one isolate (00SMH279).  For the MX10-94M5 sample, only two 
mutations among the dominant genotypes are observed (position 8755 and 8926).   
 
With the availability of rare variants present in each passaged sample, it is possible to look at the 
genome positions where variation was observed in the dominant genotype and determine 
whether additional information is obtained by observing changes in the lower frequency 
mutations in the population.  Mutations occurring at low frequency levels in the population are 
shown in Table 7 for the positions where a change was observed in the dominant genotype from 
00SMH27 unpassaged to passaged.  In several cases the unpassaged genotype was retained in the 
passaged sample as a rare variant indicating that even though the genomic locus is not explicitly 
identified as a functionally significant passage marker, determining the source of the passaged 
isolates could be improved by examining the identity of the rare variants. 
 

Table 7. Sequence variation among dominant genotypes 
 
Gene  Genome Position  MX10-

94M5UP  
00SMH
279UP 

00SMH2
79Vero  

00SMH279H 
C6/36  

MX10-94M5 
Vero 

Comments  

Non-
coding  

28  Dominant  C C  A  C  C Evidence of 
high 
variability  
at this 
position  

  Rare  - -  -  T  T 

Non-
coding 

30  Dominant  Del G  C  Del  Del Single base 
deletion  

NSP1  2454  Dominant  C T  C  C  C UP  
mutant 
retained as 
rare variant  

  Rare  - -   T  T 

NSP2  5493  Dominant  C C  T  C  C UP=C6/36  

  Rare     T  

NSP2  5495  Dominant  C C (Thr)  A (Asn)  C 
(Thr)  

C Non-
synonymous 
change  

NSP2  5502  Dominant  A A  G  G  A P strains 
differ from 
UP  

  Rare     G  

NSP2  5520  Dominant  Del* T  C  C  Del* P strains 
differ from 
UP  

NSP2  5523  Dominant  T T  G  T  T UP=C6/36  

NSP4  7422  Dominant  C C  T  T  C P strains 
differ from 
UP  

  Rare     T  
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E1  10265  Dominant  T C  T  T  T P strains 
differ from 
UP  

E1  10274  Dominant  G T  C  C  G UP  
mutant 
retained as 
rare variant  

  Rare   -  T  T   

 
In searching for genetic markers of passage, one hypothesis is that genomic loci that differ in the 
natural isolates, but show a common genotype at low abundance levels in the passaged isolates, 
could be indicative of selection for a passage-associated genotype.  To search for possible 
genetic markers of cell passage, we initially focused on mutations that differed in the dominant 
genotypes among the two natural isolates, which were highly divergent (75.8% identity over the 
genome).  Table 8 shows that there were only 3 mutations that fit this criterion but in two of 
three cases, the mutation was synonymous making it less clear whether functional selection is in 
progress.  Figure 7 shows the number of rare variants shared across all three passaged samples 
that occur at different abundance levels within each population.  There are 1,120 rare variants, 
which were observed in all three passaged isolates, at 0.01% percent of the reads overlapping the 
genome position (abundance) or higher and just one mutation, which occurred in all three 
samples with at least 0.09% of the reads overlapping the genome position. 
 

Table 8. Convergent rare variants.  Shows the three mutations in the genome, where the two 
divergent isolates (00SMH279 and MX10-94M5) have different dominant genotypes but share 

the same rare variant in after passaged in cell culture.  This table shows the associated gene, 
genome position, the dominant genotypes, the share rare genotype, and the abundance in the 

population of the rare variant for the three passaged samples (Vero 00SMH279, C6/36 
00SMH279 and Vero MX10-94M5). 

Gene  Genome   
Position 

00SMH279  MX10-
94M5 

Rare 
Mutation  

Vero 
00SMH279 
(frequency)   

C6/36 
00SMH279   
(frequency)   

Vero 
MX10-94M5 
(frequency)   

NSP1 576 GGG 
G 

GGA 
G 

GGT  
G 

0.12 0.09 0.03 

NSP2 3660 GAC 
D 

GAA 
E 

GAT 
D 

0.04 0.03 0.08 

E2 8810  CCG 
P 

CCT 
P 

CCA 
P 

0.03 0.03 0.03 
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Figure 7. Abundance of rare variants found in all three passaged populations. X-axis shows 
abundance as the percentage of reads overlapping the position of interest and containing the rare 
variant.  The y-axis counts the total number of rare variants found in all three samples with the 

minimum abundance on the x-axis. 

 
 
A second set of candidate passage markers were selected using the frequency distribution in 
Figure 7 as a guide. Rare variants that occur in all three samples above a minimum abundance 
threshold were chosen. The threshold was set to 0.07% to target the 12 (collectively across all 
three samples) most abundant positions.  The candidates are listed in Table 9 and indicate that 6 
of the 12 mutations are non-synonymous changes.  While many of the rare variants appear at 
very low frequency levels (< 0.1%), position 8896 stands out as a non-synonymous change in the 
E2 protein from Serine (S) to Leucine (L) that is relatively high in abundance (as high as 11.3% 
in the MX10 Vero cells) and could indicate that the genotype is selected in cell culture.  Once we 
obtain the comparable unpassaged samples we can confirm the presence or absence of the 
mutations in the starting populations.  If the absence of these 12 rare variant mutations in the 
unpassaged samples can be confirmed these positions should be considered carefully for marking 
evidence of cell culture passage. 
 
Table 9. Abundant rare variants shared in cell culture.  This table shows positions in the genome 

where all three passaged isolates have the same rare variants. Positions in red indicate non-
synonymous mutations. The last three columns show the relative abundance as a percentage of 

overlapping mapped reads with the rare variant in each of the three passaged samples. 

Gene  Genome   
Position 

Dominant  Rare 
Mutation  

Vero 
00SMH279   

C6/36 
00SMH279   

Vero 
MX10-
94M5 

NSP1 838 CAC 
H 

TAC  
Y 

0.1 0.08 0.07 

NSP1 1131 CTC 
L 

CTT 
L 

0.08 0.09 0.08 

NSP2 3018 ATC 
I 

ATT 
I 

0.08 0.07 0.08 
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NSP3 4666 CAC 
H 

TAT 
Y 

0.09 0.08 0.08 

NSP3 5261 TCC 
S 

TTC 
F 

0.07 0.08 0.07 

NSP4 6174 TGC 
C 

TGT 
C 

0.08 0.08 0.09 

NSP4 7068 TCC 
C 

TTT 
C 

0.68 0.08 0.09 

NSP4 7089 GTG 
V 

GTA 
V 

0.08 0.09 0.07 

E2 8896 TCA 
S 

TTA 
L 

0.10 0.1 11.3 

E2 9543 CCG 
P 

TCG 
S 

0.1 0.1 0.07 

6K 
MP 

9944 CCT 
P 

CCC 
P 

0.9 0.12 0.12 

E1 10785 GAA 
E 

AAA 
K 

0.08 0.09 0.1 

 

Analysis of human and equine monocyte replication patterns for VEEV strains 
 
To determine human and equine monocyte replication patterns for genetically diverse VEEV 
strains, and subsequently correlate phenotypes with genetic signatures, the replication kinetics of 
10 VEEV isolates representing major lineages and subtypes were to be examined in human and 
equine monocytes. Equine monocytes were to be collected from whole blood provided by donor 
horses at the Texas A&M College of Veterinary Medicine, and human monocytes provided by 
human donors at the UTMB blood bank. 
 
Following unexpected delays in obtaining horse monocytes from our collaborators at Texas 
A&M University, it has become necessary to identify a new source for equine cellular material. 
We have not yet been able to finalize collaboration with a newly identified source, thus we are 
currently in pursuit of a new and more reliable source of horse blood for completion of this 
portion of the task during Year 3. 
 
We performed the infection of human THP-1 macrophages using five VEEV strains: IAB TrD, 
IC 3908, IC SH3, ID ZPC738, and IE 68U201. Cells were infected at an MOI of 10, and 
harvested at 0, 12, 24 and 48 hours post-infection.  
 
This preliminary experiment showed several interesting distinctions in replication patterns 
between the selected strains (Figure 8). Notably, the ID ZPC strain demonstrated increased 
replication between 12 and 24 hours, while the IE-68U201 strain replicated at a slower rate 
following 12 hours after infection. These results will be confirmed in subsequent experiments 
with additional harvesting time-points, and slightly modified infection conditions to eliminate the 
variability in titers at the initial infection time point (T0). Further, five additional VEEV strains 
will be included in the follow-up experiments. 

 
Figure 8. VEEV growth kinetics in THP-1 macrophages 
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Discussion and Conclusions 
 

Tools for rapid genotyping of equine encephalitis virus strains and elucidating their 
phylogenetic relationships are critically important for understanding why certain strains are 
likely to cause epizootic infection, and to enable us to forecast the incidence of potential 
epidemic events. The results above represent analysis of VEEV strains derived from a wide 
range of hosts and geographic regions. The collected data indicate that our microarray and 
sequencing-based genotyping tools effectively distinguish VEEV strains and allow us to cluster 
those strains according to their derivation and phenotypic history. 
 
SNP-based phylogenetics 
 
 Our SNP analyses revealed that, in general, VEEV isolates do not group phylogenetically 
according to host, as strains clustered together were often derived from different host species. 
Nor could we identify a single mutation reliably associated with host; dozens of mutations were 
significantly associated with horse or human hosts, but to make host predictions of moderate 
accuracy required a combination of multiple mutations. This was not surprising for viruses 
capable of zoonotic infection that circulate among multiple hosts, as the host in which a strain 
was collected is somewhat a matter of chance.  
 We also observed instances in which individual isolates within a cluster had a distinct 
host deviation from other strains in the cluster. For instance, strains 63Z1 and MenaII were the 
only IE strains isolated from human infections. As these strains are nearly identical to isolates 
collected from hamsters and mosquitos, it is possible that these cases of human infection were 
due to variation in host phenotype or unusually high exposure to enzootic strains; the human host 
may have demonstrated an atypical propensity toward infection, resulting in disease being 
associated with a strain that is generally only observed in enzootic infection, rather than 
mutations in the VEEV strains.   

Predicting genotype/phenotype associations was slightly more accurate based on variable 
positions from a whole genome alignment than based on kSNP SNPs, and models required fewer 
variations to achieve this accuracy. The VEEV genome is small enough that MSA of more than 
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100 sequences was possible. This is not usually the case for much larger bacterial genomes, 
making kSNP SNPs a good option for bacterial genotype/phenotype association studies. 
 Relying on non-random associations between subtype and sequence variation, we were 
able to build models to predict subtype. With 18-54 loci per subtype, prediction accuracy was 
90-99%. However, accuracy was never 100% and strains that clustered phylogenetically with a 
different subtype were usually mis-labeled by the predictive models, indicating that we still do 
not have a good understanding of antigenic switch. For each of the types, there were alignment 
positions in which the allele was significantly associated with type, but at no positions was there 
perfect association, suggesting that serotype must result from more complex interactions at 
multiple positions. Previous investigators have explored mutations required for VEE to transition 
from the enzootic cycle (birds, small mammals, Culex mosquitos, forest habitats) to the epizootic 
cycle (Aedes/Ochlerotatus/Psorophora mosquitos, amplification in equids, transmission to 
humans).  They (Anishchenko et al. 2006b) reported a single mutation in the E2 protein (T213 -> 
K or R) that, when engineered into a subtype ID enzootic strain, changed its serotype to IC and 
rendered it capable of causing viremia in horses, as well as infecting Ochlerotatus mosquitos. 
Our data suggest more complexity in this process, indicating that multiple loci are required to 
distinguish ID from IAB or IC serotypes.  
  Comparison of the phylogenetic tree predicted from whole genome SNPs was similar to 
that from whole genome multiple sequence alignment. Narrowing to single gene SNP trees 
showed that the E1 gene SNPs more closely represent the whole genome SNP tree than do the 
SNPs from the other envelope or capsid genes. This concurs with previous analyses based on 
sequence alignment rather than SNPs (Bendy et al. 1964).  However, these results emphasize that 
use of a small region of the genome for SNP analysis provides lower resolution than whole 
genome SNPs, and with some genes even results in different tree topology. A whole genome 
SNP approach more effectively represents complete phylogenetic relationships to reveal 
distinctions that otherwise would be overlooked.  

There are limitations of a k-mer based approach to SNP discovery compared with full 
sequence alignment, particularly for highly variable RNA viruses. SNPs in close proximity 
(within the k-mer context around the SNP) or identical k-mer context in non-homologous regions 
among genomes cause errors in loci identification. Nonetheless, our comparison of data derived 
from multiple sequence alignments versus SNP analysis revealed that the resultant trees were 
very similar and reliably identified comparable splits. These observed similarities are important 
in that they support the use of our unique SNP genotyping tools as a cost-efficient, fast method 
for characterizing samples without available sequence data using SNP arrays.  

 
Rapid microarray-based strain genotyping 

 
We have shown here that data obtained from SNP arrays are capable of reliably 

clustering strains in accordance with their respective whole genome sequence data. This 
technology would be particularly useful for rapidly evaluating a novel strain from an epizootic 
outbreak event. We demonstrated that we could accurately SNP type an isolate directly from 
RNA extracted from infected host tissue without isolation or culturing, a huge advantage in 
surveillance efforts where field and medical personnel need rapid strain characterization and may 
not have access to containment labs for culturing or the resources and time required for genome 
sequencing. When comparing SNP allele calls from VEEV SNP microarray versus whole or 
draft sequences, we found an overall concordance rate of 97.5%. Our previous studies have 
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shown that the SNP array calls had a higher concordance rate with finished genomes (99.8%) 
versus draft genomes (95.5%) (Gardner et al. 2013). Due to high mutation rates, loci are missing 
in many VEEV strains due to multiple nucleotide differences and indels, making this virus 
particularly challenging for SNP array classification. In the future, we hope to improve our 
methods to detect missing loci. Despite the noted limitations, placement on the phylogeny was 
very accurate for clustering array and genome data by subtype, host, country, and year.   
 
Sequence markers of laboratory passage 
 

Finally, we performed deep sequencing of strains that had undergone passage through 
cell culture and compared these data to unpassaged sequence data, with the goal of identifying a 
dominant polymorphic genetic marker indicative of passaging. As is described above, a clear 
dominant marker was not observed in our analysis. There were, however, 1000+ rare variants 
observed in passaged isolates above our set thresholds. These rare variants were explored further 
to identify whether they might serve as useful markers of passage. The pool of markers was 
downselected to six non-synonymous changes, with one in particular being observed at higher 
abundance. These markers may serve as potential indicators of genotypes associated with 
culture, a possibility which will be confirmed in further analysis once the complete set of 
passaged and unpassaged strains are available. 

 
We have demonstrated in our studies thus far that the use of our novel SNP analysis tools 

and microarrays can effectively characterize VEEV strains in a rapid and highly accurate 
manner. In addition, once genetic markers for culture passage are further explored, these tools 
may be capable of distinguishing between those strains which have undergone laboratory 
amplification. In combination, these data support our approach as a promising tool for 
understanding the progression and incidence of VEEV infection. 
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